حلقه خودریختی های مدول های کوهمولوژی موضعی
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد
- نویسنده مصطفی سپهری پویا
- استاد راهنما کاظم خشیارمنش مژگان افخمی گلی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1391
چکیده
فرض کنید rحلقه نوتری و جابجایی و aیک ایده ال سره از حلقه ی rباشد.همچنینra n:=gradeدراین صورت نشان میدهیم endr(hna(r)?extnr(hna(r),r).همچنین ثابت میکنیم که برای عدد صحیح غیر منفی nبه طوری که برای هر i?n ،0=hia(r) باشد،اگر برای هر i>0 وa?zوextir(rz,r)=0آنگاه endr(hna(r)تصویر همریخت حلقه ی rاست که rzحلقه ی کسرهای rنسبت به زیر مجموعه ی بسته ی ضربی{zj|j?0}ازrمی باشد.علاوه بر این اگر برای هرa ?z داشته باشیم homr(rz,r)آنگاه همریختی حلقه ای کانونی ??:r?endr(hna(r)یکریختی است.
منابع مشابه
آخرین مدول های کوهمولوژی موضعی و حلقه های کاتنری
فرض کنیم ( r , m) حلقه ای موضعی و نوتری و i ایده آلی از r باشد. همچنین فرض کنیم m یک r–مدول با تولید متناهی از بعد d باشد.d-امین کوهمولوژی موضعی m نسبت به i را با علامت (h_i^d(m نشان می دهیم.با توجه به دوگان ماتلیس، واضح است که اگر r کامل و p ایده آل اولی از r باشد کهann_r(h_i^d(m))?p، آنگاه خاصییت ann_r(0:_{h_i^d(m)}p)=p برقرار است. به هرحال این خاصیت درحالت کلی برقرار نیست. دراین پایان نامه...
15 صفحه اولصفر شدن آخرین مدول کوهمولوژی موضعی روی حلقه های نوتری
فرض کنیم r یک حلقه ی نوتری که لزوما موضعی نیست و m یک r مدول متناهیا تولید شده با بعد متناهی d باشد. همچنین فرض کنیم a یک ایده آل r و m اشتراک همه ی ایده آلهای اول p باشد به طوری که ??. در این صورت نشان می دهیم : ؟؟ در آن برای یک r مدول آرتینی a قرار می دهیم : ؟؟؟ بعنوان یک نتیجه ثابت می شود که برای هر ایده آل aاز r فقط تعداد متناهی آخرین مدول کوهمولوژی موضعی he(m) غیر ایزومورفیک وجود دارد ک...
15 صفحه اولمدول های کوهمولوژی موضعی تاپ
فرض کنیم(r,m) یک حلقه موضعی نوتری ،i یک ایده آل r و m یک r-مدول متناهی مولد باشد با dimm=d .واضح است که اگرr کامل باشد بنا به دوگان ماتلیس،آن گاه مدول کوهمولوژی موضعی h_i^d (m) ویژگی زیر را دارد: به ازای هر ایده آل اول ??"ann" ?_"r" "h" ?_"i" ^"d" ("m" )?p داشته باشیم: ?ann?_r (0:_(h_i^d (m) ) p)=p (*) علاوه براین، مدول کوهمولوژی موضعیh_i^d (m) در حالت کلی ویژگی(*) را ندارد.در این پایان نامه ...
خواص متناهی بودن مدول های کوهمولوژی موضعی روی حلقه های موضعی کوهن-مکولی
فرض کنیم r یک حلقه موضعی کوهن-مکولی شامل میدان k باشد و i?r ایده آلی باشد که به توسط چندجمله ای هایی برحسب دستگاهی پارامتری از r با ضرایب در k تولید شده است. در این پایان نامه ثابت شده است که تمامی اعداد باس مدول های کوهمولوژی موضعی به شرط آن که میدان باقی مانده روی k تفکیک پذیر باشد، متناهی اند. همچنین ثابت شده که تحت شرایط بالا، مجموعه ایده آل های اول وابسته به چنین مدول های کوهمولوژی موضعی ...
هم متناهی بودن مدول های کوهمولوژی موضعی
در این رساله به بحث روی مدول های کوهمولوژی میپردازیم .و نشان میدهیم که تحت شرایط خاص ایدهال های اول وابسته i-امین مدول کوهمولوژی متناهی است
15 صفحه اولساختار حلقه ی درون ریختی یک مدول کوهمولوژی موضعی مشخص
فرض کنیم (r,m) یک حلقه ی گورنشنتاین n بعدی است، برای یک ایده آل i?r با ارتفاع c ، حلقه ی درون ریختی b=?hom?_r (h_i^c (r),h_i^c (r) ) را مورد بررسی قرار می دهیم. می توان نشان داد که b یک حلقه ی جابجایی است. در حالتی که (r,m) یک حلقه ی موضعی منظم شامل یک میدان باشد، b یک حلقه ی کوهن مکولی است. ویژگی های این حلقه وابسته به بزرگترین عدد لیوبزنیک l=?dim?_k ?ext?_r^d (k,h_i^c (r) ) است که d=dim??r?i?...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023